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The Game of Nim Discrete Mathematics

1 Introduction

Nim is a simple but fascinating strategy and logic game. The game revolves
around two players and piles of objects, known as mim-heaps, or just heaps.
The players take turns and alternate removing a discrete number of objects
from these distinct heaps. Players may remove as many objects as they wish,
provided they all come from the same heap, but they must remove at least one
object, and cannot pass on their turn. Depending on the variation of nim played,
there can be any number of heaps, and the objective can either be to remove the
last possible object or forcing the other player to take the last possible object.

The history of Nim supposedly stretches back thousands of years to ancient
China or other Asian civilizations, but the current name was given by a Harvard
professor, Charles Bouton, in 1901.

Nim is an impartial game, meaning the possible moves are identical for each
player in any position. Games like Chess and Go are not, for example, because
depending on the position of the board and how many pieces are taken, the
players can have different possible moves. The only difference between moves
in an impartial games is which players turn it is. Nim is a game that has
been mathematically solved, meaning that given the starter number of heaps
and objects, one can mathematically determine the winner assuming that both
players play optimally. As a game of logic, conclusions based on the study of
Nim have had wide reaching application. This paper will cover how to solve
Nim and how the method of solving it is important to the overarching Sprague-
Grundy Theorem.

2 A Sample Game
Suppose I decide to play a game of Nim with my evil alter-ego, Divad. There

are three heaps containing one, three, and five objects. The goal is to take the
last object.

Table 1: A Game of Nim

Turn Heap 1 Heap 2 Heap 3 Move
0 1 3 5 The game begins
1 1 3 2 Divad removes 3 from Heap 3
2 1 3 1 I remove 1 from Heap 3
3 1 0 1 Divad removes 3 from Heap 2
4 0 0 1 I remove 1 from Heap 1
) 0 0 0 Divad removes 1 from Heap 3

Page 2



The Game of Nim Discrete Mathematics

Despite my best efforts, the evil Divad claims victory, and I lie hopeless in
defeat. But what allowed Divad to prevail, and could I have done anything to
prevent him from winning?

3 Solving Nim

At the end of the sample game, I was stuck in a position where I was guaranteed
to lose, since after my move, there was only one object left in the third heap,
which Divad would take. Let us use the notation a, b, ¢ to represent this position,
where a, b, and ¢ represent how many objects are left in heaps 1, 2, and 3
respectively. Thus, at the end of the previous game, I was in position 0, 0,
1. Let us label this a ”N-position,” which means the player who moves next
is guaranteed a win. Likewise, if we look at the position before this, {1, 0,
1}, it is obvious that this position guarantees a win for the player who went
previously, since the only possible move results in an N-position. Let us label
this an ”P-position.”

P-positions guarantee a win for the previous player; the player at the cur-
rent P-position can only move to an N-position.

N-positions guarantee a win for the next (current) player; the (next) player
at the current N-position can move to a P-position, forcing the other player to
move to another N-position.

Theorem: Moving to a P-position every turn will result in a win in the
Game of Nim.

{0, 0, 1} was a N-position. Since Divad would move ”next,” I would lose.
{0, 1, 1}, the scenario on the previous term, was a P-position, since my only
move would change the game to an N-position, so I would lose in that scenario
as well. Using these definitions, and by seeing whether I could move a current
state to a P-position, I can label each state either a P-position or an N-position.
For instance, {0, 1, 4} would be an N-position, since the person who moves
on that turn can change the state to {0, 1, 1}, a P-position, forcing the other
players move and therefore a win. A list of all P-positions and N-positions for
our simple three heap game of Nim is shown below.
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Table 2: Nim Game Positions

{a, b, 0} {a, b, 1} {a, b, 2} {a, b, 3} {a, b, 4} {a, b, 5}

{0,0,0}: P {0,0,1}: N {0,0,2}: N {0,0,3}: N {0,0,4}: N {0,0,5}: N
{0,1,0}: N {0,1,1}:P {0,1,2}: N {0,1,3}: N {0,1,4}: N {0,1,5}: N
{0,2,0}: N {0,2,1}:N {0,2,2}:P {0,2,3}:N {0,2,4}:N {0,2,5}:N
{0,3,00: N {0,3,1}: N {0,3,2}:N {0,3,3}:P {0,3,4:N {0,3,5}:N
{1,0,0}: N {1,0,1}:P {1,0,2}: N {1,0,3}: N {1,0,4}: N {1,0,5}: N
{1,1,0}: P {1,1,1}: N {1,1,2}:N {1,1,3}:N {1,1,4}: N {1,1,5}: N
{1,2,00: N {1,2,1}:N {1,2,2}:N {1,2,3}:P {1,2,4}:N {1,2,5}:N

{1,3,0}: N {1,3,1}: N {1,3,2}: P {1,3,3}: N {1,3,4}: N {1,3,5}:N

Fach position has edges that lead to other potential positions after a legal
move. In order to guarantee a win, the current player must move to a P-position,
since this forces the other player to move to another N-position. Continuing
along this train of thought would eventually lead to the {0,0,0} P-position,
winning the game.

Drawing the graph might be feasible for small games with a small number
of heaps and objects, but how can we guarantee a win for larger games, on the
fly, without having the time to write everything out?

If we examine the list of P-positions and N-positions, we can see that for
every P-position, XORing the number of objects in the heaps results in 0. For
instance, 1®2®3 = 0. But for every N-position, XORing the number of objects
in the heaps results in some number greater than 0. For instance, 0 1®2 = 3.

The sum that results from XORing all the remaining objects in the heaps
is known as a nim-sum. XOR, otherwise known as an exclusive-or is a logical
operation. Essentially, it is equivalent to bitwise addition in mod 2. As an
example, say we want to XOR the two numbers 9 and 7. 9 can be written in
base 2 as 1001, while 6 can be written in base 2 as 0111.
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1001
+0111

1110

We add the bits in each column in base 2, treating them individually, drop-
ping the carry out bit unlike regular addition. So 9 XOR 7 produces 14.

We want to prove that the nim-sum should equal 0 for every P-position; that
is, in order to win a game of Nim, we want to make every move such that the
position after we move has a nim-sum of 0.

3.1 Proof of P-positions and N-positions
3.1.1 Moving from a P-position results in an N-position

Let P denote the set of all P-positions in a game of Nim. If {1, xs...2,} is in
P, then z1 & x2 ® ...z, equals the nim-sum of some P-position in P. Removing
objects from a heap would thus change some heap z; to ) < z;. The nim-
sum of this new position would equal x| & 25 & ...x,,. We can prove that these
nim-sums are different by contradiction.

Assume that the nim-sums are identical. Then a} ® z2 @ ..x, = 21 @
To @ ...xy. Since XOR is commutative, we can simplify the above expression to
x} = 1. But we know that z} < 1, so this contradicts our original statement.
Clearly, the nim-sum always changes after a move. Therefore, if the nim-sum is
equivalent to 0, and the game is in a P-position, the next move will change the
nim-sum, which will no longer be equal to 0. The game moves to an N-position,
completing this part of the proof.

3.1.2 From an N-position, a move exists to a P-position

Now that we know that moving from a P-position results in an N-position, we
only need to show that a player can always move to a P-position if they are
currently in an N-position.

Let N denote the set of all P-positions in a game of Nim. If {y1, y2...yn } is in
P, then y; & y2 & ...y, equals the nim-sum of some N-position in N. Removing
objects from a heap would thus change some heap y; to y; < y;. The nim-sum
of this new position would equal y] @ y2 & ...yn.

Since XOR is associative, we can write y1 ® y2 ® ...yn as ] & (Y2 S ...Yn).
Assume that y; is the largest heap.

We know that ys & ...y, cannot possibly exceed the value of y;, because of
how XOR works, and it also cannot be equal to y;, because then we would be
XORing two of the same thing, and the nim-sum would equal 0. From this,
we can conclude that we can also remove a certain number of objects from the
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largest nim-heap in order to make y; = y2 & ...y,, which would make the nim-
sum of the new position equal to 0. By the first part of our proof, this new
position is a P-position, completing the rest of the proof.

3.2 The Sprague-Grundy Theorem

The concept of Nim can be universally applied to almost all impartial games.
The Sprague-Grundy Theorem is a generalization of the solving of Nim and
other impartial games. First, let us return to our previous table above, which
writes out every possible position in our game of Nim. However, we could
also write it in the form of a tree-like graph, linking positions that one couuld
possibly move by edges and representing positions with nodes. A small chunk
of the list of positions is shown below.

Potentially, we could model any impartial game on a graph like this one. Let
us define this graph as G = (X, F'), where X is the set of all possible positions,
and F is a function that returns a subset that contains the list of possible nodes
to move to. If the subset is empty, the game is over and the player who must
move on that turn loses.

In the above graph, we labeled the graph with the according N and P po-
sitions. Let us now introduce the mex function, or Minimum Excluded Value
function.

g(x) =min{n >0:n# g(y) for y € F(x)}

This function takes a node in the graph, examines the node and the nodes
it could potentially move to, and labels the node with a value that its followers
does not already have. Thus, this is a recursive function that can be used to
assign values to every node in the graph. For instance, take the {0,0,0} node in

Page 6



The Game of Nim Discrete Mathematics

our graph. It has no places to move, so we assign it the value of 0, since that is
the least value that has not yet been used. Next {0,1,0} can be labeled with 1,
since its only follower, {0,0,0}, already has 0 taken. {0,2,0} would be labeled 2,
since its two followers have already taken 0 and 1. We can continue to do this
throughout the entire graph. The sample graph here is labeled with the mex

values.
®

©

@ ®)

The mex values of 0 seem to match up with P-positions.

Next, graphs can be added. Say we have G; = (X1, F'1), and G2 = (X2, F2).
The sum of these games will be G(X, F) = G + Go.

The Sprague-Grundy function states that the mex function for a sum of
games on a graph is just the Nim sum of the mex functions of its components.

3.3 Conclusion

We’ve thus proven that our notion of P-positions and N-positions seems to hold
true for any position in any game of Nim. Thus, assuming perfect play, going
first will assure a victory if the starting configuration is an N-position, since
the first player has the power to move into a P-position and set up for a win.
Otherwise, if the starting configuration is in a P-position, the player who moves
second can guarantee a win. The sample game above started in an N-position,
since 1 3@ 5 = 7 # 0, meaning that since Divad went first, he was guaranteed
a win assuming he played perfectly, which he did.
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