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Kirigami and Curvature Topics in Geometry

1 Introduction

Kirigami is a variation on origami, the art of paper folding. Where origami is
named from the Japanese ori meaning ”folding”, and kami meaning ”paper”,
kiri means ”cut”. Kirigami thus allows cutting of the paper, along with folding
and creasing.

Kirigami, as an art form, has much more freedom in structure than origami.
As origami is traditionally folded from a single sheet, the ability to reshape and
restructure a sheet through cutting allows for a plethora of new orientations.
A simple and common example of kirigami is a pop-up card, transforming the
two dimensional card into a pleasing three dimensional visual through a single
unfolding motion (Figure 1). The artist Ingrid Siliakus, who is known as a
”paper architect”, utilizes kirigami concepts to create massive, intricate sculp-
tures, transforming flat surfaces into eye-poppingly complicated three dimen-
sional structures (Figure 2).

Figure 1: A pop-up kirigami card Figure 2: Sculpture by Siliakus

Outside of their artistic merit and aesthetic appeal, origami/kirigami con-
cepts are now being explored by scientists and mathematicians for more practical
purposes, such as engineering 3D structures. This has led to the development
of the field of computational origami, or the the algorithmic aspects of paper
folding. This paper will explore some of the mathematics behind paper folding
and cutting, specifically focusing on the concepts of surface curvature.

2 Motivation

Origami and kirigami are exciting concepts. They start with flat, 2D surfaces,
and result in complex 3D geometries, all without changing the intrinsic geometry
of the original material. It preserves the surface features, such as curvature
while simultaneously allowing the manipulation of the surface into a shape that
appears to have curvature. In engineering, this leads to prospects that include
foldable solar panels, collapsible robots, and modular construction pieces. It is
far easier and cheaper to mass-produce a flat, nearly two dimensional object
can that then change its orientation to fit particular needs. Other interests, like
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artificial membranes and batteries, might require the preservation of structures
on or beneath the surface, something that origami and kirigami approaches
naturally take into account. Overall, there are lots of potential improvements
and discoveries to be made in many different fields.

3 Curvature

Let us start by introducing the idea of curvature. Loosely, curvature is the idea
of how close something is to being ”straight” or ”flat”, adjectives that change
depending on context and dimension. For a smooth curve, curvature is defined
by the speed at which that curve is changing direction. In relation to origami
and kirigami, we are most interested in curvature on a 2D surface in R3. At some
point on a surface, we can find a normal vector at that point. By slicing planes
that contain that normal vector through the point, we produce a series of 2D
curves. These curves have varying curvatures, and the maximum and minimum
values of these curvatures are called the principal curvatures. The Gaussian
curvature κ is simply the product of the two principal curvatures. Intuitively,
this gives us a few ideas on how Gaussian curvature works: it can only be 0 if
one of the two principal curvatures is 0, and increases or decreases depending on
the principal curvatures also. An alternative definition of Gaussian curvature,
the spherical representation, is as follows. For point P on an arbitrary surface,
we take the set of normal unit vectors on the surface at the boundary of a
closed path that contains P. The area of this boundary is called Γ. Then we
translates the vectors to the center of a unit sphere. The vectors then will trace
out another closed boundary on this unit sphere, the area of which we call Γ′.
This is called the Gauss map (Figure 3), and we define our Gaussian curvature
as

κ = lim
Γ→P

Γ

Γ′

.

Figure 3: The Gauss Map and Gaussian Curvature

Mathematically, we can think about a piece of paper as a plane. The plane
can have some arbitrary length and width, and like an ideal piece of paper, no
thickness. Using the spherical definition of Gaussian curvature for intuition,
a flat piece of paper should have no curvature, regardless of how it is bent,

Page 3 of 7



Kirigami and Curvature Topics in Geometry

because the area of the boundary produced by the Gauss map will never enclose
any area. For instance, an untouched flat piece of paper produces a point after
applying the Gauss map, which certainly has no area, so the Gaussian curvature
is 0. Similarly, for a bent or curved sheet of paper, the Gauss map traces out
a line, but still encloses no area, also resulting in a 0 curvature. In fact, for
origami, we can calculate whether certain folds are rigid foldable by calculating
the Gaussian curvature, since it should always be 0 for rigid folds. Given this,
it might seem odd to use kirigami or origami in these situations, since because
the curvature is 0 for these rigid folds, it will be impossible to create shapes
that have true curvature, such as a sphere or a saddle. However, the strength
of these techniques in areas like engineering comes from the fact that they can
be used to approximate and simulate curvature to possibly achieve the best of
both worlds.

Figure 4:
Figure 5:

Figure 6:

4 Kirigami and curvature

The Miura-ori origami fold, which we saw in class, is a way of folding a sheet or
plane into a smaller area. It has one degree of freedom, and only allows ”furling”
and ”unfurling”. However, it is interesting because with paper, which can bend,
twisting and deforming a non-rigid Miura-ori fold, allowing bending of its faces,
produces shapes that seemingly have curvature (Figure 9)! However, while this
is okay at a glance for simulating simple curves like a saddle or a sphere, this
has difficulty simulating more complex shapes with bigger jumps in curvature
or more rugged contours. Kirigami approaches are much more robust and do
not require warping of the faces locally.

We now explore the lattice kirigami method, which involves removing area
from a 2D tesselation of regular hexagons. The key idea is that pasting edges
together from removed areas results in a 3D ”stepped” surface with changing
Gaussian curvature from area to area, but 0 net curvature (no warping or de-
formation of the surface). For instance, removing a π/6 wedge from a hexagon
in the tesselation and extending it to the centers of two neighboring hexagons
and pasting edges together produces a pentagon and two partial hexagons into
a heptagon. This is known as a ”5-7” dipole (Figure 8). Similarly, cutting out
a π/3 wedge can produce a ”2-4” dipole (Figure 9).

Cutting out an entire hexagon can produce a ”sixon”. All of these cuts allow
for ”popping” the height of the paper up or down and producing a local change
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Figure 7: A non-rigid Miura-ori saddle

Figure 8:

Figure 9:

in elevation. With a tessellation of sixons, Sussman et al showed that one can
arbitrarily simulate curvature of some shape by using these kirigami techniques
and putting together step-wise plateaus to approximate a surface gradient. It
also completely preserves the properties of the flat plane, where locally all net
curvature is 0, and is relatively simple compared to some origami techniques
(Callens). Sussman demonstrates a practical application of approximating such
a surface, creating a kirigami structure of the contours of Mt. Katahdin (Figure
11).

5 Conclusion

The science behind kirigami and origami contain powerful techniques suited
toward a variety of uses, from entertainment to building robots to architecture.
In particular, we saw that though paper has no curvature, cutting and folding
techniques can be used to simulate curvature on a larger scale, and kirigami
cutting techniques can even be used to simulate almost any arbitrary curvature
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Figure 10: a demonstration of sixons

Figure 11: Practical applications of sixons

to a relatively high level of accuracy.
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